初中数学函数教案6篇

时间:2024-06-06 11:01:51 分类:教学文档

我们所编写的教案必须紧密符合实际教学进度和学生的接受能力,为了实现个性化教育,我们需要在教案中考虑学生的学习能力和学习需求,以下是品读360小编精心为您推荐的初中数学函数教案6篇,供大家参考。

初中数学函数教案6篇

初中数学函数教案篇1

一、教材及学情分析

?二次函数的图像与性质》是北师大版九年级下册第二章第二节的内容,在学生已经学习过一次函数(包括正比例函数)、反比例函数的图像与性质,以及会建立二次函数模型和理解二次函数的有关概念的基础上进行的,它既是前面所学知识的应用、拓展,是对前面所学一次函数、反比例函数图像与性质的一次升华,又是今后学习《确定二次函数的表达式》《二次函数的应用》、《二次函数与一元二次方程》的预备知识,又是学生高中阶段数学学习的基础知识,它在教材中起着非常重要的作用。另外,本节课最大特点,是结合图形来研究二次函数的性质,这充分体现了一个很重要的数学思想——数形结合数学思想。因此,这一节课,无论是在知识上,还是对学生动手能力培养上都有着十分重要的作用。

二、教学目标及重、难点分析

通过分析,我们知道,《二次函数的图像与性质》在整个教材体系中,起着承上启下的作用,有着广泛的应用。我认为这节课的重点是:作出函数=ax2+c的图象,比较函数=ax2和函数=ax2+c的异同,了解它们的性质;函数=ax2+c的图象与性质的理解,掌握抛物线的上下平移规律是本节课的难点。

知识与技能目标

(1) 会做函数=ax2和=ax2+c的图象,并能比较它们的异同;理解a,c对二次函数图象的影响,能正确说出两函数的开口方向,对称轴和顶点坐标;

(2) 了解抛物线=ax2上下平移规律。

过程与方法目标

本节课,过程是由抽象到直观,再由直观到抽象(既二次函数=ax2+c的关系式——作出图像——说出二次函数=ax2+c的图像与性质),培养学生分析问题、解决问题的能力,培养学生观察、探讨、分析、分类讨论的能力。

情感、态度与价值观

引导学生养成全面看问题、分类讨论的学习习惯,通过直观多媒体演示和学生动手作图、分析,激发学生学习数学的积极性。

三、教学结构设计

建立以“实施主体性教学,培养学生自主探究的能力”为主的课堂教学结构模式——学教结合式。让学生先自己动手画图,然后由老师来演示,这样从直观的看图观察,思考,提问,容易激发学生的求知欲望,调动学生学习的兴趣。以“学教结合”为模式的课堂结构设计为“三个阶段”:

①准备阶段 教师先从回忆函数=ax2图象与性质,从而导入二次函数=ax2+c的图像与性质,进而带出本节课的学习目标。

②参与阶段 学生围绕目标自我表现,相互交流,启发理解。

③应用与升华阶段 这一阶段是让学生从“学会”到“会学”的升华。延伸阶段要做到“三化”,一是知识的深化,二是知识向能力、技能的转化,三是学习方法的固化,即演练巩固,牢固掌握其方法。

初中数学函数教案篇2

一、教学目标

知识与技能目标

1.初步了解作函数图象的一般步骤;

2.能熟练作出一次函数的图象,掌握一次函数及其图象的简单性质;

3.初步了解函数表达式与图象之间的关系。

过程与方法目标

经历作图过程中由一般到特殊方法的转变过程,让学生体会研究问题的基本方法。

情感与态度目标

1.在作图的过程中,体会数学的美;

2.经历作图过程,培养学生尊重科学,实事求是的作风。

二、教材分析

本节课是在学习了一次函数解析式的基础上,从图象这个角度对一次函数进行近一步的研究。教材先介绍了作函数图象的一般方法:列表、描点、连线法,再进一步总结出作一次函数图象的特殊方法??两点连线法。结合一次函数的图象,教材以议一议的方式,引导学生探索函数解析式与图象二者间的关系,为进一步学习图象及性质奠定了基础。

教学重点:了解作函数图象的一般步骤,会熟练作出一次函数图象。

教学难点:一次函数及图象之间的对应关系。

三、学情分析

函数的图象的概念及作法对学生而言都是较为陌生的。教材从作函数图象的一般步骤开始介绍,得出一次函数图象是条直线。在此基础上介绍用两点连线得一次函数的图象,学生就容易接受了。在函数解析式与图象二者之间的探讨这部分内容上,不要作更高要求,学生能回答书中的问题就可以了。教学中尽可能的多作几个一次函数的图象,让学生直观感受到一次函数的图象是条直线。

四、教学流程

一、复习引入

下图是小红某天内体温变化情况的曲线图。你知道这幅图是怎样作出来的吗?把每个时间与其对应的体温分别作为点的横坐标和纵坐标,在直角坐标系中描出这些点,这样就可以作出这个图象。

二、新课讲解

把一个函数的自变量和对应的因变量的值分别作为点的.横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

下面我们来作一次函数y = x+1的图象

分析:根据定义,需要在直角坐标系中描出许多点,因此我们应先计算这些点的横、纵坐标,即x与对应的y的值。我们可借助一个表格来列出每一对x,y的值。因为一次函数的自变量x可以取一切实数,所以x一般在0附近取值。

解:列表:

描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。

连线:把这些点依次连接起来,得到y = x+1图象(如图)它是一条直线。

三、做一做

(1)仿照上例,作出一次函数y= ?2x+5的图象。

师:回顾刚才的作图过程,经历了几个步骤?

生:经历了列表、描点、连线这三个步骤。

师:回答得很好。作函数图象的一般步骤是列表、描点、连线。今后我们可以用这个方法去作出更多函数的图象。

师:从刚才同学们作出的一次函数的图象中我们可以观察到一次函数图象是一条直线。

(2)在所作的图象上取几个点,找出它们的横、纵坐标,验证它们是否都满足关系:y= ?2x+5

四、议一议

(1)满足关系式y= ?2x+5的x 、 y所对应的点(x,y)都在一次函数y= ?2x+5的图象上吗?

(2)一次函数y= ?2x+5的图象上的点(x,y)都满足关系式y= ?2x+5吗?

(3)一次函数y=kx+b的图象有什么特点?

一次函数y=kx+b的图象是一条直线,因此作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了。一次函数y=kx+b的图象也称为直线y=kx+b

例1做出下列函数的图象

教师点评:作一次函数图象时,通常选取的两点比较特殊,即为一次函数和x轴、 y轴的交点,在列表计算时,分别令x=0,y=0就可计算出这两点的坐标。正比例函数当x=0时,y=0,即与x 、 y铀的交点重合于原点。因此做正比例函数的图象时...

《初中数学函数教案6篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

最新文章

相关内容

分类

关闭